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On the classical similarity sclutions of the continuity equation
for electrons in microwave-afterglow plasmas
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Department of Mathematics, Faculty of Science, Cairo University, Egypt

Received 8 February 1995, in final form 3 May 1995

Abstract. In a recent work by the author, a model for the continuity equation for electrons in
microwave-afterglow plasmas has been suggested. This equation reflects the dependence of the
ambipolar diffesion and of the disscciative recombination coeificients on the number density of
electrons. Here, the Lie group analysis is used to generate classical similarity solutions of this
equation. It is found that the general family of the group of characteristic trajectories not only
leads to a classical similarity solotion, alteady found by other ways, but also reveals a special
class of similarity solutions. The existence and uniqueness for the solution of the ordinary
differential equations obtained are proved, A qualitative behaviour of this solution is analysed.
Also, some special forms of these equations are exactly solved. It is found that the solution of
the continuity equation for the number density of electrons in the experiments carried out by
Penetrante ef af and Hdang ef al is decreasing or increasing.

1. Infroduction

The nonlinear electron continuity equation with isotropic and radially symmetric diffusion
coefficient is written as .

Ne = 2! ™3, (x" D(x, )8, Ne) — aN? (1.1)

where N, t and x denote the number density of electrons, time and space, respectively.
In microwave-afterglow plasma, D and ¢ are the ambipolar diffusion and recombination
coefficients, respectively. The values m = 1, 2 and 3 correspond to plasma regimes with
plane, cylindrical and spherical geometry, respectively. In (1.1) the ambipolar diffusion
coefficient is given by

D =Dy (H?—“) a2

]

where Dy is a constant and 7*(7;) is the electron temperature (for a Maxwellian distribution)
[1].

It has been shown in [2, 3] that & obeys a power law ¢ = aoTc"‘ ,Whereapand0 < k < 1
are constants, while the same behaviour was found in [1] in different experiments but for
constants —1 < k < 1. In view of the results teported in [1-3], a model for the variation
of D with N was proposed in {4]: D = DjN{ if —1 <y < 1 and D} is equal to the
diffusion coefficient if ¥ = 0. This was based on the observation that T and T vary
slowly with N, (cf figures 3 and 7 of [1]). Also, a model for the variation of ¢ with N,
was proposed as oo = cx;Nf where —1 < B < 1 and o is equal to the recombination
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coefficient when 8 = 0 [4]. In this situation the nonlinear electron continuity equation in
microwave-afterglow plasmas can be written as

N, = Dix' ™8, (x" I NY 3, N,) — g NE+2 (1.3)

where |8] < 1 and |y] < 1 correspond to the results found in the experiments [1-3].
Hereafter, we shall study equation (1.3) for all values of —o0 < 8, ¥ < o0. It is known
in the theory of partial differential equations (PDE) that if 8 = ¥ = 0, equation (1.3) is
classified as ‘almost’ linear [5] and it is nonlinear when B 5= 0 or ¥ # 0. For physical
fitness, we recall some terminology for plasma regimes described by equation (1.3). This is
done according to the different values of g and y. Also, we bear in mind that the diffusion
coefficient depends on ¥ and the recombination coefficient depends on 8.

We recall that if [y] < 1 (|yf > 1) and |B] < 1 ({£]| = 1) then equation (1.3) describes
a plasma regime of weak {strong) diffusivity and weak (strong) nonlinearity, respectively.
Thus, we have four possible plasma regimes to be analysed. The reason for choosing the
limiting values of [8] = 1 is that (as will be shown) the value 8 = —1 separates two classes
of classical similarity solutions. Similar argument holds for the values of [y| = 1. Here,
we shall be concerned with the boundary value problem (8 # —1)

N0, 1) = NoCot* 19, L Ne@x,) L 0 asx J O, t>0 (1.4)

where Cp, Ny and s are constants and will be specified later, When § = —1, the first
condition in (1.4) is replaced by

N0, t) = Nge™". (1.5)
The reason for considering the conditions (1.4-5) will be explained later. We need to
point out that the first condition in (1.4) and (1.5) may hold in a plasma regime with plane
geometry (m = 1), but it may or may not hold in plasma regimes with cylindrical (m = 2) or
spherical geometry (m = 3). In these regimes, it may hold that N(0,¢) {1 oo. Accordingly,
the second condition in (1.4) does not hold. This boundary value problem needs a separate
study.

We will demonsirate how Lie group analysis can be introduced to generate similarity
solutions of (1.3). We proceed to this by performing the transformations

A 1/2
N, a*Nﬂ'Fl Y
== = aSN{f"'lt X=22—1] =x
Dy

Now (1.3) becomes

3N = X" 3y (X" I NY 3y N) — NP2, (1.6)
Under these transformations, the boundary conditions (1.4) become {8 # —1)

N@©, 1) =7°, X" 19y N(X,7) | 0 X107>0 (1.7)

where C is taken as C = (e NS ™). Condition (1.5) will be considered later,
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2. Lie group analysis

By using the invariance groups (or Lie symmetries [6, 7] of PDEs) or by using the geometric
theory of PDEs based upon the equivalent sets of differential forms [8], we obtatn similarity
solution of (1.6) below. To construct the group of symmetries for (1.6), we rewrite it as a
coupled system of first-order PDEs in the Cauchy-Kowaleski form:

p=0xN (2.1)
g =0a:N ‘ (2.2)
g = X3 (X" INY p) — NPH2, (2.3)

The infinitesimal Lie-point transformations are of the form:
X' =X+eVX +0(%
v =1+eV" +0(h)
N =N+ev¥ +0(h _ (2.4)
P =p+eVP+0(®)
g =gq+eVI+ 0@

where ¢ is a small parameter, and the superscript / in the function V* distinguiches different
functions V*(x, 7, N, p, q). We search for functions V* such that the system of equations
(2.1)>-(2.3) is invariant under the transformations (2.4) up to first order in £. Here, we use the
standard technique presented in [6). After some manipulation, we find that the invariance
of equations (2.1)~(2.3) under the transformations (2.4) gives rise to the -solutions

V* = uaX Vi=put4v V¥ = —cuN VP = —dup VY = —ueq

@5
where
_B—yv+1 1 _B—y+3 . B+2 3
“=%+n  Tivs Taaen  Tuepn P
- 2.6)

and u and v are arbitrary constants when m = 2 or 3. The general isovector field of the
Lie analysis is given by

V= VEy +VTa, + V¥ay + V70, 2.7

By using (2.5) and (2.6), the isoﬂrector V can be decomposed into ", V) as

f} = [Lf}; + Uf’z (28)
where
Vi = aXdx + 18, — cNdy — dpd, — eqd, 2.9

V= 8, (2.10)
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and the commutation relation [Vy, Va] = V2 holds. 3
If m = 1, we have VX = pugX + A, and the corresponding isovector V can be
decomposed into

V= ;LT?I + v'i72 +l“?3 v ‘73 = 3y (2.11)

where V; and V; are given by (2.9), (2.10). In this case, the following commutation relation
hold [V, V;] = 0. The relation (2.11) reflects the fact that equation (1.6) is invariant under
translation in the space variable when m = 1, Now, the group of invariant functions under
infinitesimal Lie point transformations satisfies the relation

FX'7,N',p',q¢)=F(X,t,N,p.q) 2.12)

for some mapping F. By using (2.4) and expanding the left hand side of (2.12) up to O(g),
we find the invariance condition as

(VXay + V'3, + VV¥ay + VP8, + VI8,)F(X, 7, N, p,q) = 0. (2.13)
The characteristic curves of (2.13) satisfy

In (2.14) V¥ is taken either equal to uaeX or to paX 4+ A. We confine ourselves to
considering the case of V¥ = paX for all values of m =1, 2, 3.
The integration of (2.14) yields the functional invariants

F=Xt"* Nzt pt? ¢ (2.15)

where T =t -+ v/u.

The similarity solutions are found through one of the following implicit function
problems.

(1) Similarity solutions of the form

NT° = ¢(Xt™?, pté, g1°). (2.16)

In terms of Ovsiannikov’s definitions [9], such solutions have rank 3.
(ii) Of the form

NT°= (X7, prf)  gr* =P, prf) @.17)
or
Nt°=9(Xr™, g7 pri=¥(Xz ™%, q7%). 2.18)
These solutions are of rank 2.
(iii) Of the form
Nt =gXr™)  pr!=FXr™  g1° = $(Xr™%) (2.19)

and they are rank 1. The last solutions are called classical similarity solutions while the
forms (i) and (ii) are called partially invariant solutions after the terminology of Ovsiannikov
[91.

We notice that classical similarity solutions can also be obtained by using a dimensional
analysis of equation (1.6) but the solutions of the forms (i) and (ii} cannot. Also, they may
be obtained by the extended separation of variables. Non-classical similarity solutions of
(1.6) will be studied in future work in view of the results in [10-11]. Further, similarity
transformations of (1.6) in the absence of the term Nf+2 are special cases of those found
here.
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3. Classical similarity solutions
We focus our attention on the solution Nz° = ¢ (X)r™, By writting z = Xt~°, we have
N =175 (2). 3.1)
Solution (3.1) explains the reason for choosing the first condition in (1.4) so that when

substituting (3.1) into (1.7} cne finds that ¥ (0) = I and N(0) = v™°. Hence, in (3.1) we
take ¢ = 5. When substituting into (1.6), we find that v satisfies the equation

oY —agy = YY) g Bl (62)
The boundary conditions {(1.4) become
$(0) =1 and 2 Nz) L O asz | O (3.3)

This equation has been previously derived by the author by a straightforward method {4]. It
appears to the author to defy obtaining an explicit solution to (3.2), except for some special
values of 8, v and m. However, a qulitative behaviour of the solution of (3.2), (3.3) can
be described. We proceed to this by vsing the following theorem.

Theorem 1. ‘There exist (8, m), n (B, m) and (8, m) such that for y = (8, m),
B+1>0y2nm,—1<pf+1<0and y <, f+4 1 < —1, a unique positive solution
of (3.2-3) on [0, oo[ exists. Details of y(8, m), 11(8, m) and (8, m) are given by

m=2)(f4-1)-2 _

(Bym)= e form =1 (3.4
Yol max (—ﬁ -2, M%) form=273 '
(B, m) = | @&4;3(&_4—1))—2 ‘ ' form=1,2,3 (3.5

(B+1){m-+2(B+10)=2 form = 1
,m) = " ' 3.6
y2(B8, m) [ min (_ 52, (Q+12(m+;£§+1})—2) ) form =12, 3, (3.6)

Proof. To prove the existence of a positive solution, assume that yr = ‘ff"zz and ¥ = e#1?’;
#i = pi(y, B,m) > 0,i =0, 1. Itis clear that ¢ and ¥ satisfy the conditions (3.3). where
¥ is a lower solution and ¥ is an upper solution to (3.2)~(3.3). A direct analysis implies
that a positive solution exists and ¢ < ¥ < %. We show that the solution exists under the

conditions stated above. To this end, we set w = z™, multiply (3.2) by ¥#*+! and integrate
on [0, oof, to obtain

[2,2] 0

_ B2 Byl 2-2m
( B +2 c) f PP dw = m*y ¥
0 0

—m*(B+1) f 1lr5+”w’w2'2/” dw — f Y23 qu, . @37
0

ma

ﬂ+2
2"

0
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‘We distinguish between the following cases.
(i) If ¢ is decreasing (3’ < 0) on )0, co[, we assume that y x w™" as w 4 oo, r > 0,
then equation (3.7) holds if B +2 >0 and 7 > ro,

ﬁ_-li-—Z . . - m=1
ro = E%E - Bty+2>0m=2 (3.8)
1 1
, +y4+2>0,m=3.
m“(ﬁ+23m+y+2) Aty+2>0m

In these conditions and by using the second condition in (3.3), the first term in the right
and left hand sides of (3.7) vanishes. If 8 4 1 > 0, equation (3.7) gives rise to

ma ® B2
(ﬁ+2 c)j; P dw < 0

and then we have

By substituting for ¢ and ¢ from (2.6), we find that

2

m=2
y>—— B+ ——.

By using the conditions (3.8) we obtain (3.4). Now, if =2 < 8 < =1 in (3.7), we find

ma ® a2 % g Y AT
— c)fow dw > jow dw > fo W0 39

which gives

B+Dm+2(8+1))—2
m

y>w, n= (3.10)

(ii) If ¢ is increasing (¥’ > 0) on ]0, ocf, we assume that Y cc w” as w 4 oo, r > 0,
then 3.7) holds if B+2 < Qand r > 1y,

i m=1
1B+ 2| :
1
= = 'y =2 .
n=1mTs B+y+2<0,m @.11)
1 1
ax . +y+2<0,m=3,
& (|ﬁ+2l 31(ﬁ+y+z)|) Bty

By using these conditions in (3.7), we obtain inequalities (3.9) and find that ¥ > 3, for
—1<p+1<0,0ry <y for B+ 1 < —1. By using (3.10) and the conditions in (3.11),
we obtain equations (3.5), (3.6).
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(iif) ¥ ¢’ changes sign on ]0, oof, then there exists a point 0 < wp < oo such that
¥'(we) = 0. If ¥' < 0 on Jwy, o[, we obtain ¥ > yp; 8 > —1. Butif ¥’ > 0 on Jwy, o0l
we obtain the conditions ¥ 2 y1; 2 <B8 < —landy <18 < —2. Nextlety } .
Since ¥ (w, y,) is decreasing, we have

(w0, vaJl = sup ¥(w, ¥} is uniformly bounded.

J<w<oo

Returning to (3.2), we find that ||¥"{w, 3,)|| is also uniformly bounded. Consequently, the
sequence {yr(w, 1)} is equicontinzous and there exists a uniformly convergent subsequence
which we denote by {¥™*(w, 1,)}. We can take ¥*(w, 1) = ¥ (w, ¥u).

Thus there exists ¥*(w, ) such that ¥ {(w, yn)'ﬁfw*(w, yp) uniformly with respect
to the prescribed norm. It remains to show now that ¥r*(w, yo) satisfies (3.2)~(3.3). Since
¥/ (w, neC?[0, oc] satisfies (3.2)«3.3) for all n, then by taking n 1 o0 as the limit
confirms the above statement. Similar proof holds for y 4+ 1.

Next, we prove the uniqueness. To this end we differentiate (3.2)—(3.3) with respect to
y and obtain

— by + B2 gy = Y 0+ Y
~ B2V Yy Q.12

where the- prime in (3.12) denotes the differentiation with respect to.w = z™, and ¥,
satisfies the boundary conditions

¥ (@ =0 wz"?-/ma%% l Oasw | O (3.13)

When we substitute from (3.3) and (3.12) into (3.11) we find that glr)’jwz‘z/'" J Oas
w } 0

By successive differentiation of (3.12) with respect to w, we can prove that
w2 2my® 4 Qasw 4t Oforalln e N and m = 1,2. This implies the uniquness

of the positive solution to (3.2)}-(3.3). The proof of uniqueness when m = 3 needs a little

alteration. The proof of the theorem is complete,

The domain of existence of solutions of (3.2)-(3.3) is shown in ﬁgure Iform=1,2,
3. The qualitative behaviour of the solutions of (3.2)(3.3) is presented in theorem 2.

Theorem 2. If ¢ € C? ([0, oc]) is a solution of (3.2)—(3.3), then

WHEp+1 --,2; <y =<pB+1, +1=>0, then ¥ is increasing on ]0O, col.

IS+l <y <D i1,p+1>0and BHBp11 <y <f+1-2,8+1<0,
then v is decreasing on ]0, oof.

(iii) If ¥ belongs to the domain of existence of the solution of (3.2)—(3.3) and does not
belong to that mentioned in (i) or in (ii), then ¢ is increasing, decreasing or ¥’ changes
sign on ]0, cof.

Progf. (1) We assume the converse, namely that there exists a point 0 < wy < o0 with
' (wg) < 0. We integrate (3.2) on [0, w] and use (3.3) to find

2-2/m

(ma —¢) fw ¥ dw — mawoey (wo) = mwyg wy(wo)xjr’(tﬁo) - fw w2 dw < 0. (3.14)
0 0
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Figure 1. The lined domain in the Sy-plane is the domain of existence of solution of (3.2)-
(3.3). (@) If m = 1, this domain is defined by y > —B—3, 8> —1, ¥y 2282+ 58 + 1,
-—2<,B<-—l,y<252+5,3+1,—v%—3§ <ﬂ<—2andy<"ﬁ—2.ﬁ<—%—3§-
[¢2)] Ifm=2,thisdomainisdeﬁnedbyyB—I,ﬁ>—1,y?ﬁ2+35+1,—-2<ﬂ<-l,
y < 243841, =3 << =2andy < —F—2, 8 < —3. (¢) If m = 3, this domain is defined
byy23B-1.8>-1Ly>QF+78+2/3, -2< B <~landy < 128> +78+2),
B <=2

In (3.14), we used the fact that ¥'(wo) < Q; therefore, (3.14) gives rise to the inequality

(mae —¢) fw ¥ dw < mawpy (wo). (3.15)
0

(a) If a £ 0, then (3.15) holds only if ma — ¢ < 0. By using (2.6) and analysing these
conditions according to §+1 > 0or f+1 <0, we find that (3.15) holds if ¥ = 8+ 1,
B+1>0andify <f+1-2,8+1<0.

(b) If ma — ¢ £ 0, then (3.15) holds only if a > 0.
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Again, we use (2.6) and analysing the above conditions we find that (3.15) holds if
y<ﬁ+1—%,ﬁ+l >0orify > B+1, f+1 < 0. By collecting the above results we
find that the converse statement holds if ¥y > 8+ lory < B +1— % when 8+ 1 > 0 and
fy<pg+1-— % ory > B+ 1when 8+ 1 < 0. This contradicts the assumption in (i).
The statement in (i) is thus proved. The proof of (ii) is similar to that done in proving (i)
while (iii) holds from the proof of (i) and (ii).

The results of theorem 2 are shown in figure 2 in the A—y plane. The results of
theorems 1 and 2 are discussed in view of the different plasma regimes proposed previously.
Our aim is to determine the behaviour of the solution of (3.2), (3.3) for a given plasma
regime. In a plasma regime of weak diffusivity and weak nonlinearity which corresponds to
|y| < 1 and |8} < 1, the solution of (3.2)3.3) exists for m = 1, 2, 3. The number density
of electrons is either decreasing or increasing. In the last case, solutions of (3.2)-(3.3)
are physically accepted if the total number of electrons remains finite. This case was also
considered in [4]. However, attention was paid to obtaining decreasing solutions of (3.2).
Solutions were found by using methods of approximation. In the other different plasma
regimes, solutions of (3.2)—(3.3) may or may not exist. If they exist, they are also either
decreasing or increasing. ’

3.1. Solution of special forms of (3.2)—(3.3)
In (3.2), weseta=0(y =pF+1)and m = 1. In this case (3.2) becomes

—cy = (YY) — P (3.16)
After setting K = ¥#*2 in (3.15), it integrates to

K’Z = (ﬁ +2)[K2 — MK@-}JV@-}-Z} + DU] ﬁ # _1, _2, _3 (3.17)

B+DE+3)
where Dy is a constant. By using (3.3), we find that
2(8 +2)
Dy=14——"——""—. 3.18
ST BEDEY G19)

After theorem 1, the solution of (3.17) exists for ¥ = 41 (cf figure 1). Also, one can prove
this by showing that the right-hand side of (3.17) is non-negative for all 8 # —1, -2, —3.
Further, the values of K which make the RHS of (3.16) non-negative can be estimated
according to the different values of 5. Equivalently, the behaviour of the solution is
determined. One finds that it is increasing when 8 > 0 and is increasing, decreasing
or ¥’ changes sign when 8 < 0. When g = 0, the solution of (3.15) is ¥(z) = 1. In this
case, one finds 1 (0) =...=1!;$)) =...=0. . .
Now, we use a particular value § = —3/2 into (3.17) and find that the solution is

N /1 5
[y ARV | =4
F [Zta.n 7 v 1 3 16«/5] 2z (3.19)

where F(y, u) is an elliptic integral-of the first kind. When 8 = —1/2, the solution of
(3.17is

1

2
y-dy z . :
—_——————— = —, - (3.20)
w'l y6 — -%2)75 + % \/g )
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+{$+2=0

C©

Figure 2. The dashed domain is the domain where the solution of {3.2)-(3.3) is increasing. The
dotted domain is the domain where the solution of (3.2)-(3.3) is decreasing. Otherwise, in the
white domain, contained in the domain of existence, the solution is increasing, decreasing or v/

changes sign.

m=3

Note that solution (3.19) is increasing but (3.20) is decreasing.

Next we consider the particular values § = =2, —=3. When § = =3, the integral of

(3.16) and (3.3) gives

Here, K > 0 implies X € 1 (i 2 1), and in this case the solution of (3.15) is also
increasing.

K*=1-EKE*>+hK.

If 8 = -2, the integral of (3.15)} together with (3.2) give

K*
—“5—=8K+K“1.
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Equation (3.22) implies K 2> O (¥ > 1) and the solution of (3.16) is also increasing.
Now, returning to (3.2}, it can be written in the form

_ ma(w’z,b‘)' — m2w3—-1 (w2—2/m¢.y wr) _ ws—lwﬂ-i-z ﬁ 75 -1 (3‘23)
where 5 = ﬁ Hwetake f=—-2ands=1(y = _;2 = 1} then (3.23) integrates to
wp = —mp VM2 oy (3.24)

where the constant of integration is equal to zero by using (3.3). _Equation (3.24) integrates

to
2

—2 ¥ yE-l

E - 1 Yy + 1
Also, equation (3.23) integrates when s = % and B=-2(ory = -3 and § = —2). When
using (3.3), we find

dy. (3.25)

’ 2 3 z2 2
v-Sy+e-my-Sy=0 (3:26)

which is an Abel equation of the second kind. We notice that when setting m = 2 in (3.26),
we obtain (3.24).
After a sequence of transformations, ¥ =h™! ,h=gz>™" and K =g — -"*2%, equation
(3.26) takes the form ’
dz

1
— 2K = 3.2
Te + 2Kz mz (3.27)

Equation (3.27) is Bernouili’s equation for m = 1, 2.

4. Similarity solution of (1.6) for 8 = —1

We consider the case of 8 = ~1 in (1.6), and find other invariants with ¢ = 0 (of (2.5)-
(2.6)) namely:

F=Xxe®*  Neht  pe i g @.1)

where A 3£ 0 is an arbitrary constant and y 5 0. Here we consider the classical similarity
solution:

Ne™ = y(2) Z=Xe¥r. : (4.2)

‘When substituting from (4.2) into (1.5), we find that ¥(0) = 1 and A = 5/0g. When
substituting from (4.2) into (1.6), we obtain

myh

O+ DY — ——wy’ = m* @YYy 4.3)
where w = Z™. We solve {4.3) under the conditions
Y0 =1 wr A"y |0 asw } 0. (4.4)

Theorem 3. Forﬂlk#Oory%Oifm:1,2,3andA+1+l‘¥SO,y+1>Oor

A1 %ﬂ >0, y+1<0if m=2, 3, aunique positive solution of (4.3)~(4.4) exists.
The proof of this theorem is similar to that of theorem 1. The domain of existence of
the solution of (4.3)+(4.4) is shown in figure 3.
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Figure 3. The lined domain in the pA-plane is the domain of existence of solution of (4.3)-(4.4).

4.1, Solution of some special forms of (4.3)-(4.4)

We rewrite equation (4.3) in the form

_““_yzlm (') =m*uw " @y gy @53)

where s = —z—f;‘ﬁ'-}. Equation (4.5) integrates if s = and 5 = %
if s =1, we have

¥

R mw! =Myl 24+ pm=#£0 (4.6)

where by (4.4} the constant of integration is zero. Equation (4.6) integrates to

272 1y . m
x!»z(y+1"+—m) 1+”T>0. @7
2

If 1+ L2 < 0, equation (4.7} does rot hold (or the solution of (4.3)-(4.4) does not exist).
If 1 + &= =0, equation (4.5) is rewritten in the form

¥+ Ay = mP @ty myy, 4.8)
By setting X = f;’ ¥ dw, in (4.8), it integrates to
K -+ le: = m2w2—2/mK!—2/mKﬂ' (4.9)

Equation (4.9) integrates in twa cases: A=l m=land ;=21 m#2 fi=1and
m =}, we have

1
wk = % 4 1. (4.10)

By eliminating X from (4.10) and (4.9), and integrating the resulting equation, we find

RIS =
z=eH5) f‘“ eFdy. : @10
1]
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Similar treatment holds in the case A = —3 and m = 3. If m = 2 in (4.9), we use the Euler
transformation w = ¢’ and find that it becomes

4 dK '
K—l—lK*:-K—*(K**—K*) K*=E. 4.12)
This equation integrates to
L b K
K*emiKH) = _g—3k+d [%4 + %] +Co (4.13)

where Cp = e—,__;-(l+ 2), by using (4.4). By eliminating K from (4.13) and (4.9), we obtain

' 2
4 4 N dwy' (A +2) A2 Opretyrlyy (4.14)

2yt oy T Ty
Note that if A = =2, the solution of (4.14) (or (4.9)) which satisfies (4.4) does not exist.
If s = Z or &l = 1, equation (4.5) integrates to

1
Y my Y — (2 — pre  2-m 4.15
1+yw ¥ =mwy’y —( m)y+1+y+1 (4.15)
where ¥ + 14 0, If m = 2, then (4.15) integrates to
3 1/v
¢,=(1+_”f) . . @“.16)
When = 1 and y = —3, equation (4.15) integrates to
4 et —1)*
_4 _ 4.1
v=2(55) @1

When y = —1, A = -2 and m # 2, equations (4.3)-(4.4) integrate to

1

= —zz N
1+ 2{M=2)

¥ 4.18)

If y = —1,m =2 and A = —1, equations (4.3}~(4.4) integrate to

1
_1-!—%2--

W 4.19)

Further, we have studied partially invariant solutions of (1.6) and (1.5) but nc new solutions
have been found, apart from the steady-state one. The details are not, therefore, reproduced
here.

Finally, we study travelling-wave solutions of (1.6) in the next section.
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5. Travelling wave solutions of (1.6)

Solutions of (1.6) in the form of travelling waves propagating at a speed C are assumed in
the form N = ¢(Z), Z = X &= Cr. The = signs indicate the direction of propagation of
these waves.

When substituting this solution into (1.6), we find that it exists only when m = 1 and
yr satisfies

ECY = @ry) —yP (6.1

We search for solutions of (5.1) which satisfy ¥(Z 1 ©0) = 0. It can be written in the
form )

& . o_em
(v + D +hk T =pck S p+1£0 5.2)

where k = ¥t and h = k' F Ck™7. Equatlon (5.2) integrates when %&_’% =1 and
—%}:—) = 1. In the first case, we have

dr'lem’ = m[ e?rf_”’dy (53)
A

where h = (¥ + Dy¥ ' £ Cyr and y 4+ 1 < 0. In the second case equation (5.1) integrates
to

-1 1 e~k

(v + 1)2m(h Y&

¥ = (5.4)
where o = i—; and # is given above. If ¥ 4+ 1 < 0, we have for travelling waves
propagating m the positive direction to the x-axis the expression

1
(y + 12 _T7 -C?D
zZ Z >

a &z ¢
where D is a constant. We notice that further integrals of (5.2) can be found for some
special values of 8 and y # —1. Further studies of equations (3.2) and {(4.3) will be carried
out in future work. Invariants of these equations, quadratic and of higher orders in +r, will
be investigated in view of the results in [12, 13].

1,[;_—_[1)+

6. Conclusions

We have studied equation (1.6) using the Lie group analysis and identified similarity
transformations, Among hypothesized classical similaricy solutions of (1.6), we have found
that if —1 < 8 < 1 and —1 < y < 1, these solutions are either decreasing or increasing.
Using the terminology proposed here, the values of —1 < g < land -1 < g < 1
correspond to a plasma regime of weak nonlinearity and weak diffusivity. This situation
corresponds’ to that found in the experiments of [1-3].

Furthermore, solutions for plasma regimes of weak (or strong) nonlinearity and weak
(or strong) diffusivity have been investigated. The limiting values, 8 = %1 and y = =1,
are interesting in the sense that they separate four plasma regimes. Classical similarity
solutions of (1.6) have been revealed for these values.
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