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I. Phys. A Mafh. Gen. 28 (1995) 3991-4005. plinted in the UK 

On the classical sindarity solutions of the continuity equation 
for electrons in microwave-afterglow plasmas 

H I Abdel-Gawad 
Department of Mathematic% Facdty of Science, Cairo University, Egypt 

Received 8 February 1995. in 6nal form 3 May 1995 

Abshaet In a recent work by the author, a model for the continuity equation for electrons in 
microwaveafterglow plasmas has been suggested. This equation reflects the dependence of the 
ambipolar diffusion and of the dissociative recombination coefficients on the number density of 
electrons. Here, the Lie group analysis is used to generate classical si&@ solutions of this 
equation. It is found thal the general family of the group of characteristic trajectories not only 
leads to a classical similarity solution, already found by other ways. but also reveals a special 
class of similarity solutions. The existence and uniqueness for the solution of the ordinary 
diffesnIiai equalions obrained a n  proved. A qualitative behaviour of this solution is analyszd 
Also, some special forms of these equations are exactly solved. It is found that the solution of 
the continuity equation for the number density of electrons in the experiments canid out by 
Penetrante et at and Hdang et a1 is den'easing m increasing. 

1. Inboduction 

The nonlinear electron continuity equation with isotropic and radially symmetric diffusion 
coefficient is written as 

a,N, = x'-ma,(xm-'D(x, t )azNe) -:N: (1.1) 

where Ne, t and x denote the number density of electrons, time and space, respectively. 
In microwave-afterglow plasma, D and 01 are the ambipolar diffusion and recombination 
coefficients, respectively. The values m = 1, 2 and 3 correspond to plasma regimes with 
plane, cylindrical and spherical geometry, respectively. In (1.1) the ambipolar diffusion 
coefficient is given by 

D = Do (1 + 2) (1.2) 

where DO is a constant and T;(T.) is the electron temperature (for a Maxwellian distribution) 
111. 

It has been shown in 12.31 that cd obeys a power law (Y = WT;', where (YO and 0 < k < 1 
are constants, while the same behaviour was found in [1] in different experiments but for 
constants -1 < k < 1. In view of the results reported in [1-3], a model for the variation 
of D with N was proposed in 141: D = D;N: if -1 < y < 1 and 0; is equd to the 
diffusion coefficient if y = 0. This WEB based on the observation that T: and T, vary 
slowly with Ne (cf figures 3 and 7 of [l]). Also, a model for the variation of n with N. 
was proposed as (Y = where -1 < fl  < 1 and 01; is equal to the recombination 
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coefficient when p = 0 [4]. In this situation the nonlinear electron continuity equation in 
microwave-afterglow plasmas can be written as 

&Ne = D&r'-"'a,(x"-'N,Ya,N,) -(U,"!+' (1.3) 

where IpI < 1 and IyI < 1 correspond to the results found in the experiments [l-31. 
Hereafter, we shall study equation (1.3) for all values of -CO < p, y c CO. It is known 
in the theory of partial differential equations (F'DE) that if @ = y = 0, equation (1.3) is 
classified as 'almost' linear [SI and it is nonlinear when @ # 0 or y # 0. For physical 
fitness, we recall some terminology for plasma regimes described by equation (1.3). This is 
done according to the different values of p and y .  Also, we bear in mind that the diffusion 
coefficient depends on y and the recombination coefficient depends on @. 

We recall that if IyI < 1 ( Iy l  > 1) and IpI c 1 (If?] > 1) then equation (1.3) describes 
a plasma regime of weak (strong) diffusivity and weak (strong) nonlinearity, respectively. 
Thus, we have four possible plasma regimes to be analysed. The reason for choosing the 
limiting values of IpI = 1 is that (as will be shown) the value p = -1 separates two classes 
of classical similarity solutions. Similar argument holds for the values of [yI  = 1. Here, 
we shall be concerned with the boundary value problem (p # -1): 

Ne(O, t )  = NoCot' x"'& J. N.(x. t )  J- 0 as x J. 0, t > 0 (1.4) 

where CO, NO and s are constants and will be specified later. When p = -1, the first 
condition in (1.4) is replaced by 

Ne(O, t )  = Nee-'. (1.5) 

The reason for considering the conditions (1.4-5) will be explained later. We need to 
point out that the first condition in (1.4) and (1.5) may hold in a plasma regime with plane 
geometry (m = l), but it may or may not hold in plasma regimes with cylindrical (m = 2) or 
spherical geometry (m = 3). In these regimes, it may hold that N(0 ,  t )  t CO. Accordingly, 
the second condition in (1.4) does not hold. This boundary value problem needs a separate 
study. 

We will demonstrate how Lie group analysis can be introduced to generate similarity 
solutions of (1.3). We proceed to this by performing the transformations 

Now (1.3) becomes 

a,N = X'-ax(X"'-'N''axN) -NO+'. (1.6) 

Under these transformations, the boundary conditions (1.4) become (f? # -1) 

N ( O , r )  = r S , X m - ' a x N . ( X , t )  J- 0 X J. 0 , ~  > 0 (1.7) 

where C is taken as C = ((u~N;")'. Condition (1.5) will be considered later, 
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2. Lie group analysis 

By using the invariance groups (or Lie symmetries [6,7] of PDEs) or by using the geometric 
theory of F'DEs based upon the equivalent sets of differential forms [8], we obtain similarity 
solution of (1.6) below. To construct the group of symmetries for (1.6), we rewrite it as a 
coupled system of first-order PDEs in the Cauchy-Kowaleski form: 

p = a x N  

4 = W  
q = x  I-maX(xm-lNYp) - 

The infinitesimal Lie-point transformations are of the form: 

X' = X + EVX +O(EZ) 

z' = 5 + E V r  + O(&*) 

pr = p + &VP + O(&Z) 

q' = q + E V 4  + O(EZ) 

N' = N +&VN + O(E') 

where E is a small parameter, and the superscript h in the function V h  distinguiches different 
functions V h ( x ,  z, N ,  p .  q ) .  We search for functions V h  such that the system of equations 
(2.13-(2.3) is invariant under the transformations (2.4) up to first order in E. Here, we use the 
standard technique presented in [6]. After some manipulation, we find that the invariance 
of equations (2.1j-(2.3) under the transformations (2.4) gives rise to the solutions 

V x  = p a x  V r  = pr + v V N  = -cpN VP = -dpp Vq = -peg 

(2.5) 

where 

and p and v are arbitrary constants when m = 2 or 3. The general isovector field of the 
Lie analysis is given by 

f = vXax + v'a, + vNaN + vqa,. (2.7) 

By using (2.5) and (2.6), the isovector v can be decomposed into (9, 9) as 
v = pet + vvz (2.8) 

(2.9) 
(2.10) 
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and the commutation relation [?I, ?2] = ?Z holds. 

decomposed into 
If m = 1, we have V x  = p a x  + A, and the corresponding isovector ? can be 

V = ~ ? ~ + V ? Z + A ? ~ .  ?;=ax (2.11) 

where and ?z are given by (2.9), (2.10). In this case, the following commutation relation 
hold [?3, ?z] = 0. The relation (2.11) reflects the fact that equation (1.6) is invariant under 
translation in the space variable when m = 1. Now, the group of invariant functions under 
infinitesimal Lie point transformations satisfies the relation 

(2.12) 

for some mapping F .  By using (2.4) and expanding the left hand side of (2.12) up to O(E), 
we find the invariance condition as 

(2.13) 

F(X', 7'. N', p', 4') = ~ F ( X ,  r,  N, P. 4) 

(vxax + v'a, + vNaN + v p a ,  + vqap(x, s, N, p ,  4)  = 0. 
The characteristic curves of (2.13) satisfy 

(2.14) 

In (2.14) V x  is taken either equal to p a x  or to pax + 1. We confine ourselves to 
considering the case of V x  = p a x  for all values of m = 1,2,3.  

The integration of (2.14) yields the functional invariants 

F = Xt-' N t C  prd 5' (2.15) 

The similarity solutions are found through one of the following implicit function 

(i) Similarity solutions of the form 

where s = t + v/p. 

problems. 

NrC = +(Xr-",  prd, qr'). (2.16) 

In terms of Ovsiannikov's definitions [9], such solutions have rank 3. 
(ii) Of the form 

~r~ = ~ ( x P ,  p r d )  qsc = 4(xr", p r d )  (2.17) 

01 

NrC = $(Xr-', qrC) p r d  = $ ( X r 4 , q r e ) .  (2.18) 

These solutions are of rank 2. 
(iii) Of the form - 

NrC = ~ ( X T - ' )  prd = q ( X r - 9  45' = ~ ( X S - " )  (2.19) 

and they are rank 1. The last solutions are called classical similarity solutions while the 
forms (i) and (ii) are called partially invariant solutions after the terminology of Ovsiannikov 
PI. 

We notice that classical similarity solutions can also be obtained by using a dimensional 
analysis of equation (1.6) but the solutions of the forms (i) and (ii) cannot. Also, they may 
be obtained by the extended separation of variables. Non-classical similarity solutions of 
(1.6) will be studied in future work in view of the results in [lC-ll]. Further, similarity 
transformations of (1.6) in the absence of the term NP+' are special cases of those found 
here. 
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3. Classical similarity solutions 

We focus our attention on the solution N r C  = @(X)r-".  By writting z = Xr-, we have 

N = P @ ( Z ) .  (3.1) 

Solution (3.1) explains the reason for choosing the first condition in (1.4) so that when 
substituting (3.1) ,hto (1.7) one finds that @(O) = 1 and N(0)  = CS. Hence, in (3.1) we 
take c = s. When substituting into (1.6), we find that @ satisfies the equation 

- c@ - az$' = zl-m(zm- l@Y@y - @P+Z ,8 # -1. (3.2) 

The boundary conditions (1.4) become 

This equation has been previously derived by the author by a straightforward method [4]. It 
appears to the author to defy obtaining an explicit solution to (3.2), except for some special 
values of ,8, y and m. However, a qulitative behaviour of the solution of (3.2), (3.3) can 
be described. We proceed to this by using the following theorem. 

Theorem 1 .  There exist yo(B,m), y l (B,m) and h ( B , m )  such that for y 2 yo(B,m), 
,8 + 1 z 0; y y,, -1 < ,8 + 1 c 0 and y < n, ,8 + I  < -1, a unique positive solution 
of (3.2-3) on IO, CO[ exists. Details of yo@, m),  y1(,8, m )  and yz(,8, m )  are given by 

Proof. To prove the existence of a positive solution, assume that - 9 .= e-floz' ~~ and $ = #z2; 

pi = pi(y, ,8. m )  > 0, i = 0, 1. It is clear that @ and $ satisfy the conditions (3.3). where 
@ is a lower solution and $ is an upper solution to (3.2)-(3.3). A direct analysis implies 
that a positive solution exists and @ < @ < $. We show that the solution exists under the 
conditions stated above. To this end, we set w = zm, multiply (3.2) by +P+l and integrate 
on [0, CO[, to obtain 

- _  
- 

(3.7) 
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We distinguish between the following cases. 

then equation (3.7) holds if ,S + 2 > 0 and r > ro, 
(i) If II. is decreasing (p' c 0) on 10, CO[, we assume that II. a w-' as w .f CO, r > 0, 

1 
B + 2  
- m = l  

In these conditions and by using the second condition in (3.3), the first term in the right 
and left hand sides of (3.7) vanishes. If B + 1 > 0, equation (3.7) gives rise to 

and then we have 

By substituting for a and c from (2.6), we find that 

m - 2  2 (B + 1) - -. 
Y = - T  m 

By using the conditions (3.8) we obtain (3.4). Now, if -2 c B c -1 in (3 .3,  we find 

which gives 

Gs + I)(m + Z ( p  + 1)) - 2  
m Y ' Yl. Yl = (3.10) 

(ii) If II. is increasing (p' 0) on IO, CO[, we assume that p a w' as w t CO, r > 0, 
then (3.7) holds if B + 2 < 0 and r > rl, 

m = l  

~ B + y + Z c O , m = Z  (3.11) 

By using these conditions in (3.7), we obtain inequalities (3.9) and find that y z y, for 
-1 < f i  + 1 c 0, or y < n for B + 1 c -1. By using (3.10) and the conditions in (3.11), 
we obtain equations (3.9, (3.6). 
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(<U) If +' changes sign on IO, CO[, then there exists a point 0 < WO < 00 such that 
+'(WO) = 0. If @' < 0 on ]WO. 031, we obtain y 2 yo; p t -1. But if @' 0 on ]wo, CO[, 

we obtain the conditions y 2 y1; -2 < B < -1 and y -= m; ,9 < -2. Next let y .1 yo. 
Since @(w, yn) is decreasing, we have 

Il@(w, yn)ll = sup @(W. y.) is uniformly bounded. 
O<w<m 

Returning to (3.2), we find that Il@"(w, yn)ll is also uniformly bounded. Consequently, the 
sequence {$(w,  y,,)} is equicontinuous and there exists a uniformly convergent subsequence 
which we denote by [ p ( w ,  K)). We can take @*(w, yn) = @(W. y.). 

Thus there exists @*(w, yo) such that @(w,  y,)*hm$*(w, M) uniformly with respect 
to the prescribed norm. It remains to show now that v ( w ,  yo) satisfies (3.2)-(3.3). Since 
@/(W. fi&C2[0, 031 satisfies (3.2H3.3) for all n, then by taking n t 03 as the l i t  
confirms the above statement. Similar proof holds for y t y1. 

Next, we prove the uniqueness. To this end we differentiate (3.2H3.3) with respect to 
y and obtain 

where the-prime in (3.12) denotes the differentiation with respect t c ~ w  = z'", and @" 
satisfies the boundary conditions 

qY J. 0 as w .1 0. (3.13) 
d 

dw 
W2-2/" - 

@y(O) = 0 

When we substitute from (3.3) and (3.12) into (3.11) we find that @;wZ-2/m .1 
w 4 0. 

By successive differentiation of (3.12) with respect to w, we can prove that 
w~-~/'"@$") f 0 as w t 0 for all n E N and m = 1,2. This implies the uniquness 
of the positive solution to (3.2)-(3.3). The proof of uniqueness when m = 3 needs a little 
alteration. The proof of the theorem is complete. 

The domain of existence of solutions of (3.2H3.3) is shown in figure 1 for m = 1, 2, 
3. The qualitative behaviour of the solutions of (3.2X3.3) is presented in theorem 2. 

Theorem 2. If @ E Cz ([O, CO[) is a solution of (3.2)-(3.3), then 
(i) Ifs + 1 - 
(ii) If j?+ 1 < y < y p  + 1, B+1> 0 and y p  + 1 i y < p+ 1 - $, p + 1 < 0, 

then @ is decreasing on IO, m[. 
(iii) If y belongs to the domain of existence of the solution of (3.2H3.3) and does not 

belong to that mentioned in (i) or in (ii), then @ is increasing, decreasing or @' changes 
sign on IO, CO[. 

Proof. (i) We assume the converse, namely that there exists a point 0 < WO < 03 with 
@'(WO) < 0. We integrate (3.2) on [O, w] and use (3.3) to find 

(ma - c) 1 @dw -mawo@(wo) = mwo @ (WO)@I'I(WO) - 1 @#+'dw < 0. (3.14) 

< y < B +  1, B + 1 > 0, then @ is increasing on 10, w[. 

UI W 
2-21m 
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(cl m=3 
Figure 1. 7he lined domain in the By-plane is the domain of existence of solution of (3.2)- 
(3.3). (a) If m = 1, this domain is defined by y 4 -p - 3, 8 =- -1, y b 2p2 + 50 + 1, 
-2 c f l  < -1, y <2@2+5p+1,  -$ -9 c p  c -2 and y < - B - Z , f l c  -$ - $. 
(b) If m = 2  this domain is defined by Y B -1.B > -1, y 4p2+3p+ 1, -2 < j3 c - I ,  
y < P2$38+1, -3 B < -2and y C -8-2, f l <  -3. (e) Ifm = 3, this domain is defined 
by Y 4 g(B - 1). 8 > -1, Y > (2P2 +78 +2)/3, - 2<  B < -1 and y c 4(2@2+7@+2), 

c -2. 

In (3.14), we used the fact that @'(WO) c 0; therefore, (3.14) gives rise to the inequality 

(3.15) 

(a) If a < 0, then (3.15) holds only if ma - c < 0. By using (2.6) and analysing these 
conditions according to B + 1 > 0 or B + 1 < 0, we find that (3.15) holds if y 3 B + 1, 
p + 1  > O a n d i f y c p + 1 - 2 , p + 1  <O. 

(b) If ma - c < 0, then (3.15) holds only if a > 0. 
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Again, we use (2.6) and analysing the above conditions p e  find that (3.15) holds if 
y -= B +  1 - :, B +  1 > 0 or if y > B +  1, B +  1 < 0. By collecting the above results we 
find that the converse statement holds if y > p + 1 or y < B + 1 - 2 when p + 1 > 0 and 
if y < B + 1 - $ or y > B + 1 when p + 1 < 0. This contradicts the assumption in (i). 
The statement in (i) is thus proved. The proof of (ii) is similar to that done in proving (i) 
while (iii) holds from the proof of (i) and (ii). 

The results of theorem 2 are shown in figure 2 in the B-y plane. The results of 
theorems 1 and 2 are discussed in view of the different plasma regimes proposed previously. 
Our aim is to determine the behaviour of the solution of (3.2), (3.3) for a given plasma 
regime. In a plasma regime of weak diffusivity and weak nonlinearity which corresponds to 
IyI < 1 and < 1, the solution of (3.2H3.3) exists for m = 1, 2, 3. The number density 
of electrons is either decreasing or increasing. In the last case, solutions of (3.2)-(3.3) 
are physically accepted if the total number of electrons remains finite. This case was also 
considered in [41. However, attention was paid to obtaining decreasing solutions of (3.2). 
Solutions were found by using methods of approximation. In the other different plasma 
regimes, solutions of (3.2H3.3) may or may not exist. If they exist, they are also either 
decreasing or increasing. 

3.1. Solution of special f o r m  of (3.2)-(3.3) 

In (3.2). we set a = 0 (y  = ,3 + 1) and m = 1. In this case (3.2) becomes 

- c@ = (@@+I@’) - @.8+2. (3.16) 

After setting K = @Bf2 in (3.15). it integrates to 

where DO is a constant. By using (3.3), we find that 

(3.18) 

After theorem 1, the solution of (3.17) exists for y = p+1 (cf figure 1). Also, one can prove 
this by showing that the right-hand side of (3.17) is non-negative for all ,9 # -1, -2, -3. 
Further, the values of K which make the HIS of (3.16) non-negative can be estimated 
according to the different values of j3. Equivalently, the behaviour of the solution is 
determined. One finds that it is increasing when @ > 0 and is increasing, decreasing 
or @’ changes sign when p i 0. When B = 0, the solution of (3.15) is @(z)  = 1. In this 

Now, we use a particular value ,9 = -3/2 into (3.17) and find that the solution is 
.~ case, one finds @(O) = . . . = @:$ = . . . = 0. ~~ 

(3.19) 

where F ( y ,  p) is an elliptic integral.of the first kind. When p = -1/2, the solution of 
(3.17) is ’ ’ 

(3.20) 
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ici m=3 
Figure 2. The dashed domain is the domain where the solution of (3.2H3.3) is increasing. The 
dotted domain is the domain where the solution of (3.2H3.3) is decreasing. Otherwise, in the 
white domain, contained in the domain of existence, the solution is increasing, decreasing or $r‘ 

changes sign. 

Note that solution (3.19) is increasing but (3.20) is decreasing. 

(3.16) and (3.3) gives 
Next we consider the particular values @ = -2, -3. When @ = -3, the integral of 

K’* = 1 - K’ + 1nK. (3.21) 

Here, K‘* >, 0 implies K < 1 ($ 2 l), and in this case the solution of (3.15) is also 
increasing. 

If @ = -2, the integral of (3.15) together with (3.2) give 

- eK + K - 1. K’= -- 
2 (3.22) 
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Equation (3.22) implies K > 0 (@ > 1) and the solution of (3.16) is also increasing. 
Now, returning to (3.2). it can be written in the form 

- ma(ws@)' = m2ws-'(w 2-2 /m@Iy@' )  - w'-'*~+' ,3 # -1 (3.23) 
where s = t. If we take ,3 = -2 and s = 1 ( y  = 2 - 1) then (3.23) integrates to 

w~ = - m , p 2 / m  $ W2-2/m + (3.24) 

where the constant of integration is equal to zero by using (3.3). Equation (3.24) integrates 
to 

(3.25) 

(3.26) 

which is an Abel equation of the second kind. We notice that when setting m = 2 in (3.26). 
we obtain (3.24). 

After a sequence of transformations, @ = h-' , h = gz2-" and K = g - f, equation 
(3.26) takes the form 

Equation (3.27) is Bernoulli's equation for m = 1,2. 

4. Similarity solution of (1.6) for p = -1 

(3.27) 

We consider the case of ,3 = -1 in (1.6), and find o ~ ~ - x  invariants with p = 0 (of (2.5)- 
(2.6)) namely: 

F = XeQ* Ne-)" pe-A(2-~)r qe-Ar (4.1) 
where A # 0 is an arbitrary constant and y # 0. Here we consider the classical similarity 
so 1 uti on : 

(4.2) 
32 Ne-A7 = *(Z) 

When substituting from (4.2) into (l.S), we find that *(O) = 1 and h = S/cu,. When 
substituting from (4.2) into (1.6), we obtain 

Z = Xe 2 r. 

where w = Zm. We solve (4.3) under the conditions 

@(O) = 1 ,2-2/m @ J . O  ' a S w J 0 .  

(4.3) 

(4.4) 
Theorem 3. For all 1 # 0 or y # 0 if m = 1, 2, 3 and h + 1 + % < 0, y + 1 > 0 or 
A + 1 + + =. 0, y -i- 1 < o if m = ~ 3 ,  a unique positive solution of (4.3)-(4.4) exists. 

The proof of this theorem is similar to that of theorem 1. The domain of existence of 
the solution of (4.3H4.4) is shown in figure 3. 
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Figure 3. The lined domain in the yi-plane is the domain of existence of solution of (4.3x4.4). 

4.1.. Solution of some special forms of (4.3H4.4) 

We rewrite equation (4.3) in the form 

-(w$q,)f = m2Ws-I(W2-Z/m Y I 
-yAm 

2 * * )  

where s = -9. Equation (4.5) integrates i f s  = 2 and s = 2 
Ifs = 1, we have 

where by (4.4) the constant of integration is zero. Equation (4.6) integrates to 

y m  1 + - > o .  
y2zz ' / Y  

P=(Y*-) l + ?  2 

(4.5) 

(4.7) 

If 1 f F < 0, equation (4.7) does not hold (or the solution of (4.3H4.4) does not exist). 
If 1 + = 0, equation (4.5) is rewritten in the form 

* + A(w+)' m2(wz-2/m*-z/m~')'. (4.8) 

(4.9) 

Equation (4.9) integrates in two cases: A = 1, m = 1 and 
m = 1, we have 

= - 1, m # 2. If A = 1 and 

(4.10) 
1 

K f  
w K = - - + l .  

By eliminating K firom (4.10) and (49), and integrating the resulting equation, we find 

(4.11) 



On the classical similarity solutions 4003 

Similar treatment holds in the case. h = -3 and m = 3. If m = 2 in (4.9), we use the Euler 
transformation w = e' and find that it becomes 

dK 4 K -t IK' = -(K** - K") 
K* dt (4.12) K* = _, 

This equation integrates to 

(4.13) 

where CO = $;(A+ Z), hy using (4.4). By eliminating K from (4.13) and (4.9), we obtain 

(4.14) 

Note that if I = -2, the solution of (4.14) (or (4.9)) which satisfies (4.4) does not exist. 
I f s  = 2 or = -1, equation (4.5) integrates to m Y A  

where y + 1 # 0. If m = 2, then (4.15) integrates to 

When m = 1 and y = -4, equation (4.15) integrates to 

When y = -1, h = and m # 2, equations (4.3H4.4) integrate to 

1 *=  2' ' 
1 + i W 5  

If y = -1, m = 2 and h = -;, equations (4.3H4.4) integrate to 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

Further, we have studied partially invariant soIutions of (1.6) and (1.5) but no new solutions 
have been found, apart from the steady-state one. The details are not, therefore, reproduced 
here. 

Finally, we study travelling-wave solutions of (1.6) in the next section. 



4004 HI Abdel-Gawad 

5. lkavelling wave solutions of (1.6) 

Solutions of (1.6) in the form of travelling waves propagating at a speed C are assumed in 
the form N = @(a, Z = X iz C r .  The & signs indicate the direction of propagation of 
these waves. 

When substituting this solution into (1.6), we find that it exists only when m = 1 and 
@ satisfies 

(5.1) & C@' = (q!Y@')  - @+Z. 

We search for solutions of (5.1) which satisfy $(Z t CO) = 0. It can be written in the 
form 

(5.2) 

where k = @vcl and h = k ' 5  C k - h .  Equation (5.2) integrates when -U!B - 1 and 
-3 = 1. In the first case, we have 

W+l) - 

(5.3) 

where h = ( y  + l)@?@' F C @  and y + 1 < 0. In the second case equation (5.1) integrates 
to 

-1 1 e-uh 
(A - -)- - 

( y +  1)Za a a2 rlr= (5.4) 

where a = $& and h is given above. If y + 1 < 0, we have for travelling waves 
propagating in the positive direction to the x-axis the expression 

where D is a constant. We notice that further integrals of (5.2) can be found for some 
special values of p and y # -1. Further studies of equations (3.2) and (4.3) will be carried 
out in future work. Invariants of these equations, quadratic and of higher orders in @, will 
be investigated in view of the results in [12,13]. 

6. Conclusions 

We have studied equation (1.6) using the Lie group analysis and identified similarity 
transformations. Among hypothesized classical similariiy solutions of (1.6). we have found 
that if -1 c p < 1 and -1 < y < 1, these solutions are either decreasing or increasing. 
Using the terminology proposed here, the values of -1 < p < 1 and -1 g 4 1 
correspond to a plasma regime of weak nonlinearity and weak diffusivity. This situation 
corresponds' to that found in the experiments of [I-31. 

Furthermore, solutions for plasma regimes of weak (or strong) nonlinearity and weak 
(or strong) diffusivity have been investigated. The limiting values, p = &l and y = hl, 
are interesting in the sense that they separate four plasma regimes. Classical similarity 
solutions of (1.6) have been revealed for these values. 
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